您现在的位置是:网站首页> 编程资料编程资料
python sklearn 画出决策树并保存为PDF的实现过程_python_
2023-05-26
449人已围观
简介 python sklearn 画出决策树并保存为PDF的实现过程_python_
利用sklearn画出决策树并保存为PDF
下载Graphviz
进入官网下载并安装:
https://graphviz.gitlab.io/_pages/Download/Download_windows.html
并将下列路径配置为环境变量:
- D:\software\Graphviz\bin
在cmd中测试:
dot -version

python代码
import numpy as np import pandas as pd from sklearn import tree import graphviz # x,y是sklearn中需要拟合的数据 x = np.array(exam_train) y = np.array(classes_train) clf = tree.DecisionTreeClassifier(criterion='entropy', class_weight='balanced', max_depth=25) clf = clf.fit(x, y) dot_data = tree.export_graphviz(clf, out_file=None, feature_names=None, filled=True, rounded=True) # 重要参数可定制 graph = graphviz.Source(dot_data) graph.render(view=True, format="pdf", filename="decisiontree_pdf")
可以生成一张贼帅的决策树PDF:

python sklearn 决策树运用
数据形式(tree.csv)
age look income orderly target older ugly low yes no young ugly high no no young handsome low no no young handsome high yes yes young handsome medium yes yes young handsome medium no no

python源代码:
# -*- coding:utf-8*- # 将字典 转化为 sklearn 用的数据形式 数据型 矩阵 from sklearn.feature_extraction import DictVectorizer import csv from sklearn import preprocessing from sklearn import tree allElectronicsData = open('c:/pic/data/tree.csv','rb') reader = csv.reader(allElectronicsData) header = reader.next() # print header ## 数据预处理 featureList = [] labelList = [] for row in reader: # print row[-1] labelList.append(row[-1]) # 下面这几步的目的是为了让特征值转化成一种字典的形式,就可以调用sk-learn里面的DictVectorizer,直接将特征的类别值转化成0,1值 rowDict = {} for i in range(1, len(row) - 1): rowDict[header[i]] = row[i] featureList.append(rowDict) for each in featureList: print each # Vectorize features vec = DictVectorizer() dummyX = vec.fit_transform(featureList).toarray() print("dummyX:"+str(dummyX)) print(vec.get_feature_names()) # label的转化,直接用preprocessing的LabelBinarizer方法 lb = preprocessing.LabelBinarizer() dummyY = lb.fit_transform(labelList) print("dummyY:"+str(dummyY)) print("labelList:"+str(labelList)) #criterion是选择决策树节点的 标准 ,这里是按照“熵”为标准,即ID3算法;默认标准是gini index,即CART算法。 clf = tree.DecisionTreeClassifier() clf = clf.fit(dummyX,dummyY) print("clf:"+str(clf)) # 导入相关函数,可视化决策树 # 导出的结果是一个dot文件(在系统默认路劲),需要安装Graphviz才能将它住哪华为PDF或png格式 # 输出的dot文件可以使用graphvize软件转为PDF,graphvize安装目录中的bin目录放入到环境变量的Path中 # 使用如下命令 #cmd # dot -Tpdf c:/tree.dot -o c:/tree.pdf #下载地址:http://www.graphviz.org/Download_windows.php #生成dot文件 with open("c:/tree.dot",'w') as f: f = tree.export_graphviz(clf, feature_names= vec.get_feature_names(),out_file= f)以上为个人经验,希望能给大家一个参考,也希望大家多多支持。
您可能感兴趣的文章:
相关内容
- Python轻量级搜索工具Whoosh的使用教程_python_
- Python实现读取HTML表格 pd.read_html()_python_
- Python和C语言利用栈分别实现进制转换_python_
- python 正则表达式如何实现重叠匹配_python_
- Python中闭包与lambda的作用域解析_python_
- 利用Python和C语言分别实现哈夫曼编码_python_
- Flask-Vue前后端分离的全过程讲解_python_
- 手把手教你利用Python创建一个游戏窗口_python_
- Python进程管理神器Supervisor详解_python_
- Python的functools模块使用及说明_python_
